1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
//! Service for spawning new Forth tasks.
//!
//! This is a channel producer that communicates with the background task
//! created by [`SpawnulatorServer::register`].
//!
//! # The Unfortunate Necessity of the Spawnulator
//!
//! Forth tasks may spawn other, child Forth tasks. This is currently
//! accomplished by sending the forked child [`Forth`] VM over a channel to a
//! background task, which actually spawns its [`Forth::run()`] method.  At a
//! glance, this indirection seems unnecessary (and inefficient): why can't the
//! parent task simply call `kernel.spawn(child.run()).await` in the
//! implementation of its `spawn` builtin?
//!
//! The answer is that this is, unfortunately, not possible. The function
//! implementing the `spawn` builtin, `spawn_forth_task()`, *must* be `async`,
//! as it needs to perform allocations for the child task's dictionary, stacks,
//! etc Therefore, calling `spawn_forth_task()` returns an `impl Future` which
//! is awaited inside the `Dispatcher::dispatch_async()` future, which is itself
//! awaited inside `Forth::process_line()` in the  parent VM's [`Forth::run()`]
//! async method. This means the *layout* of the future generated for
//! `spawn_forth_task()` must be known in order to determine the layout of the
//! future generated for [`Forth::run()`]. In order to spawn a new child task, we
//! must call [`Forth::run()`] and then pass the returned `impl Future` to
//! [`Kernel::spawn()`]. This means that the generated `impl Future` for
//! [`Forth::run()`] becomes a local variable in [`Forth::run()`] --- meaning
//! that, in order to compute the layout for [`Forth::run()`], the compiler must
//! first compute the layout for [`Forth::run()`]...which is, naturally,
//! impossible.
//!
//! We can solve this problem by moving the actual
//! `kernel.spawn(forth.run()).await` into a separate task (the spawnulator), to
//! which we send new child [`Forth`] VMs to over a channel, without having
//! called their `run()` methods. Now, the [`Forth::run()`] call does not occur
//! inside of [`Forth::run()`], and its layout is no longer cyclical. I don't
//! feel great about the fact that this requires us to, essentially, place child
//! tasks in a queue in order to wait for the priveliege of being put in a
//! different queue (the scheduler's run queue), but I couldn't easily come up
//! with another solution...

use core::{convert::Infallible, time::Duration};

use uuid::Uuid;

use crate::{
    comms::{
        kchannel::{KChannel, KConsumer},
        oneshot::Reusable,
    },
    forth::{self, Forth},
    registry::{
        known_uuids::kernel::FORTH_SPAWNULATOR, Envelope, KernelHandle, Message, RegisteredDriver,
    },
    tracing, Kernel,
};

////////////////////////////////////////////////////////////////////////////////
// Service Definition
////////////////////////////////////////////////////////////////////////////////
pub struct SpawnulatorService;

impl RegisteredDriver for SpawnulatorService {
    type Request = Request;
    type Response = Response;
    type Error = Infallible;

    const UUID: Uuid = FORTH_SPAWNULATOR;
}

////////////////////////////////////////////////////////////////////////////////
// Message and Error Types
////////////////////////////////////////////////////////////////////////////////
pub struct Request(forth::Forth);
pub struct Response;

////////////////////////////////////////////////////////////////////////////////
// Client Definition
////////////////////////////////////////////////////////////////////////////////

pub struct SpawnulatorClient {
    hdl: KernelHandle<SpawnulatorService>,
    reply: Reusable<Envelope<Result<Response, Infallible>>>,
}

impl SpawnulatorClient {
    pub async fn from_registry(kernel: &'static Kernel) -> Self {
        loop {
            match Self::from_registry_no_retry(kernel).await {
                Some(port) => return port,
                None => {
                    // SerialMux probably isn't registered yet. Try again in a bit
                    kernel.sleep(Duration::from_millis(10)).await;
                }
            }
        }
    }

    pub async fn from_registry_no_retry(kernel: &'static Kernel) -> Option<Self> {
        let prod = kernel
            .with_registry(|reg| reg.get::<SpawnulatorService>())
            .await?;

        Some(SpawnulatorClient {
            hdl: prod,
            reply: Reusable::new_async().await,
        })
    }

    pub async fn spawn(&mut self, vm: Forth) -> Result<(), forth3::Error> {
        let id = vm.forth.host_ctxt().id();
        tracing::trace!(task.id = id, "spawn u later...");
        match self.hdl.request_oneshot(Request(vm), &self.reply).await {
            Ok(_) => {
                tracing::trace!(task.id = id, "enqueued");
                Ok(())
            }
            Err(_) => {
                tracing::info!(task.id = id, "spawnulator task seems to be dead");
                Err(forth3::Error::InternalError)
            }
        }
    }
}

////////////////////////////////////////////////////////////////////////////////
// Server Definition
////////////////////////////////////////////////////////////////////////////////

pub struct SpawnulatorServer;

pub enum RegistrationError {
    SpawnulatorAlreadyRegistered,
}

impl SpawnulatorServer {
    /// Start the spawnulator background task, returning a handle that can be
    /// used to spawn new `Forth` VMs.
    #[tracing::instrument(level = tracing::Level::DEBUG, skip(kernel))]
    pub async fn register(
        kernel: &'static Kernel,
        capacity: usize,
    ) -> Result<(), RegistrationError> {
        let (cmd_prod, cmd_cons) = KChannel::new_async(capacity).await.split();
        tracing::debug!("who spawns the spawnulator?");
        kernel
            .spawn(SpawnulatorServer::spawnulate(kernel, cmd_cons))
            .await;
        tracing::debug!("spawnulator spawnulated!");
        kernel
            .with_registry(|reg| reg.register_konly::<SpawnulatorService>(&cmd_prod))
            .await
            .map_err(|_| RegistrationError::SpawnulatorAlreadyRegistered)?;
        Ok(())
    }

    #[tracing::instrument(skip(kernel, vms))]
    async fn spawnulate(kernel: &'static Kernel, vms: KConsumer<Message<SpawnulatorService>>) {
        tracing::debug!("spawnulator running...");
        while let Ok(msg) = vms.dequeue_async().await {
            let mut vm = None;

            // TODO(AJM): I really need a better "extract request contents" function
            let resp = msg.msg.reply_with_body(|msg| {
                vm = Some(msg.0);
                Ok(Response)
            });

            let vm = vm.unwrap();
            let id = vm.forth.host_ctxt().id();
            kernel.spawn(vm.run()).await;
            let _ = msg.reply.reply_konly(resp).await;
            tracing::trace!(task.id = id, "spawnulated!");
        }
        tracing::info!("spawnulator channel closed!");
    }
}