1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
//! Async-aware Container Types
//!
//! These types play well with [MnemosAlloc][crate::heap::MnemosAlloc]
use crate::heap::alloc;
use core::{
alloc::Layout,
cell::UnsafeCell,
mem::MaybeUninit,
ops::{Deref, DerefMut},
ptr::NonNull,
};
//
// Arc
//
/// A wrapper of [`alloc::sync::Arc<T>`]
pub struct Arc<T: ?Sized> {
inner: alloc::sync::Arc<T>,
}
// These require the same bounds as `alloc::sync::Arc`'s `Send` and `Sync`
// impls.
unsafe impl<T: Send + Sync> Send for Arc<T> {}
unsafe impl<T: Send + Sync> Sync for Arc<T> {}
impl<T> Arc<T> {
/// Attempt to allocate a new reference counted T.
///
/// Returns an error containing the provided value if the allocation
/// could not immediately succeed.
///
/// NOTE/TODO: Today this will panic if not immediately successful. This should
/// be fixed in the future
pub fn try_new(t: T) -> Result<Self, T> {
Ok(Self {
inner: alloc::sync::Arc::new(t),
})
}
/// Attempt to allocate a new reference counted T.
///
/// Will not complete until the allocation succeeds
///
/// NOTE/TODO: Today this will panic if not immediately successful. This should
/// be fixed in the future
pub async fn new(t: T) -> Self {
Self {
inner: alloc::sync::Arc::new(t),
}
}
/// Convert into a pointer
///
/// This does NOT change the strong reference count
pub fn into_raw(a: Self) -> NonNull<T> {
unsafe { NonNull::new_unchecked(alloc::sync::Arc::into_raw(a.inner).cast_mut()) }
}
/// Restore from a pointer
///
/// This does NOT change the strong reference count. This has the same
/// safety invariants as [alloc::sync::Arc].
#[inline(always)]
pub unsafe fn from_raw(nn: NonNull<T>) -> Self {
Self {
inner: alloc::sync::Arc::from_raw(nn.as_ptr()),
}
}
/// Increment the strong reference count
///
/// This has the same afety invariants as [alloc::sync::Arc::increment_strong_count()].
#[inline(always)]
pub unsafe fn increment_strong_count(ptr: *const T) {
alloc::sync::Arc::increment_strong_count(ptr)
}
}
impl<T> Clone for Arc<T> {
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
}
}
}
impl<T> Deref for Arc<T> {
type Target = alloc::sync::Arc<T>;
#[inline(always)]
fn deref(&self) -> &Self::Target {
&self.inner
}
}
//
// Box
//
/// A wrapper of [`alloc::boxed::Box<T>`]
pub struct Box<T> {
inner: alloc::boxed::Box<T>,
}
unsafe impl<T: Send> Send for Box<T> {}
unsafe impl<T: Sync> Sync for Box<T> {}
impl<T> Box<T> {
/// Attempt to allocate a new owned T.
///
/// Will not complete until the allocation succeeds.
pub async fn new(t: T) -> Self {
let ptr: *mut T = alloc(Layout::new::<T>()).await.cast().as_ptr();
unsafe {
ptr.write(t);
Self::from_raw(ptr)
}
}
/// Attempt to allocate a new owned T.
///
/// Returns an error containing the provided value if the allocation
/// could not immediately succeed.
pub fn try_new(t: T) -> Result<Self, T> {
match NonNull::new(unsafe { alloc::alloc::alloc(Layout::new::<T>()) }) {
Some(ptr) => unsafe {
let ptr = ptr.cast::<T>().as_ptr();
ptr.write(t);
Ok(Self {
inner: alloc::boxed::Box::from_raw(ptr),
})
},
None => Err(t),
}
}
/// Convert into a pointer
pub fn into_raw(me: Self) -> *mut T {
alloc::boxed::Box::into_raw(me.inner)
}
/// Convert from a pointer
///
/// This has the same safety invariants as [alloc::boxed::Box::from_raw()]
pub unsafe fn from_raw(ptr: *mut T) -> Self {
Self {
inner: alloc::boxed::Box::from_raw(ptr),
}
}
/// Convert to a regular old alloc box
pub fn into_alloc_box(self) -> alloc::boxed::Box<T> {
self.inner
}
}
impl<T> Deref for Box<T> {
type Target = alloc::boxed::Box<T>;
#[inline(always)]
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl<T> DerefMut for Box<T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.inner
}
}
//
// ArrayBuf
//
/// A spooky owned array type
///
/// This type represents ownership of essentially an `UnsafeCell<MaybeUninit<[T]>>`.
///
/// It is intended as a low level building block for things like bbqueue and other data
/// structures that need to own a specific number of items, and would like to set their
/// own safety invariants, without manually using `alloc`.
pub struct ArrayBuf<T> {
ptr: NonNull<UnsafeCell<MaybeUninit<T>>>,
len: usize,
}
unsafe impl<T: Send> Send for ArrayBuf<T> {}
unsafe impl<T: Sync> Sync for ArrayBuf<T> {}
impl<T> ArrayBuf<T> {
/// Gets the layout for `len` items
///
/// Panics if creating the layout would fail (e.g. too large for the platform)
fn layout(len: usize) -> Layout {
Layout::array::<UnsafeCell<MaybeUninit<T>>>(len).unwrap()
}
/// Try to allocate a new ArrayBuf with storage for `len` items.
///
/// Returns None if the allocation does not succeed immediately.
///
/// Panics if the len is zero, or large enough that creating the layout would fail
pub fn try_new_uninit(len: usize) -> Option<Self> {
assert_ne!(len, 0, "ZST ArrayBuf doesn't make sense");
let layout = Self::layout(len);
let ptr = NonNull::new(unsafe { alloc::alloc::alloc(layout) })?.cast();
Some(ArrayBuf { ptr, len })
}
/// Try to allocate a new ArrayBuf with storage for `len` items.
///
/// Will not return until allocation succeeds.
///
/// Panics if the len is zero, or large enough that creating the layout would fail
pub async fn new_uninit(len: usize) -> Self {
assert_ne!(len, 0, "ZST ArrayBuf doesn't make sense");
let layout = Self::layout(len);
let ptr = alloc(layout).await.cast();
ArrayBuf { ptr, len }
}
/// Obtain a pointer to the heap allocated storage, as well as the length of items
///
/// This does NOT leak the heap allocation. The returned pointer has the lifetime
/// of this `ArrayBuf`.
pub fn ptrlen(&self) -> (NonNull<UnsafeCell<MaybeUninit<T>>>, usize) {
(self.ptr, self.len)
}
}
impl<T> Drop for ArrayBuf<T> {
fn drop(&mut self) {
debug_assert_ne!(self.len, 0, "how did you do that");
let layout = Self::layout(self.len);
unsafe {
alloc::alloc::dealloc(self.ptr.as_ptr().cast(), layout);
}
}
}
//
// FixedVec
//
/// A `Vec` with a fixed upper size
///
/// Semantically, [FixedVec] works basically the same as [alloc::vec::Vec], however
/// [FixedVec] will NOT ever reallocate to increase size. In practice, this acts like
/// a heap allocated version of heapless' Vec type.
pub struct FixedVec<T> {
inner: alloc::vec::Vec<T>,
}
unsafe impl<T: Send> Send for FixedVec<T> {}
unsafe impl<T: Sync> Sync for FixedVec<T> {}
impl<T> FixedVec<T> {
/// Try to allocate a new FixedVec with storage for UP TO `capacity` items.
///
/// Returns None if the allocation does not succeed immediately.
///
/// Panics if the len is zero, or large enough that creating the layout would fail
pub fn try_new(capacity: usize) -> Option<Self> {
assert_ne!(capacity, 0, "ZST FixedVec doesn't make sense");
let layout = Layout::array::<T>(capacity).unwrap();
unsafe {
let ptr = NonNull::new(alloc::alloc::alloc(layout))?;
return Some(FixedVec {
inner: alloc::vec::Vec::from_raw_parts(ptr.cast().as_ptr(), 0, capacity),
});
}
}
/// Try to allocate a new FixedVec with storage for UP TO `capacity` items.
///
/// Will not return until allocation succeeds.
///
/// Panics if the len is zero, or large enough that creating the layout would fail
pub async fn new(capacity: usize) -> Self {
assert_ne!(capacity, 0, "ZST FixedVec doesn't make sense");
let layout = Layout::array::<T>(capacity).unwrap();
unsafe {
let ptr = alloc(layout).await;
return FixedVec {
inner: alloc::vec::Vec::from_raw_parts(ptr.cast().as_ptr(), 0, capacity),
};
}
}
/// Attempt to push an item into the fixed vec.
///
/// Returns an error if the fixed vec is full
#[inline]
pub fn try_push(&mut self, t: T) -> Result<(), T> {
if self.is_full() {
Err(t)
} else {
self.inner.push(t);
Ok(())
}
}
/// Attempt to push an item into the fixed vec.
///
/// Returns an error if the slice would not fit in the capacity.
/// If an error is returned, the contents of the FixedVec is unchanged
#[inline]
pub fn try_extend_from_slice(&mut self, sli: &[T]) -> Result<(), ()>
where
T: Clone,
{
let new_len = match self.inner.len().checked_add(sli.len()) {
Some(c) => c,
None => return Err(()),
};
if new_len > self.inner.capacity() {
return Err(());
}
self.inner.extend_from_slice(sli);
Ok(())
}
/// Obtain a reference to the underlying [alloc::vec::Vec]
#[inline]
pub fn as_vec(&self) -> &alloc::vec::Vec<T> {
&self.inner
}
/// Get inner mutable vec
///
/// SAFETY:
///
/// You must not do anything that could realloc or increase the capacity.
/// We want an exact upper limit.
///
/// This would not be memory unsafe, but would violate the invariants of [FixedVec],
/// which is supposed to have a fixed upper size.
#[inline]
pub unsafe fn as_vec_mut(&mut self) -> &mut alloc::vec::Vec<T> {
&mut self.inner
}
/// Obtain a reference to the current contents
#[inline]
pub fn as_slice(&self) -> &[T] {
&self.inner
}
/// Obtain a mutable reference to the current contents
#[inline]
pub fn as_slice_mut(&mut self) -> &mut [T] {
&mut self.inner
}
/// Clear the FixedVec
#[inline]
pub fn clear(&mut self) {
self.inner.clear();
}
/// Is the FixedVec full?
#[inline]
pub fn is_full(&self) -> bool {
self.inner.len() == self.inner.capacity()
}
}