1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//! Async-aware Container Types
//!
//! These types play well with [MnemosAlloc][crate::heap::MnemosAlloc]

use crate::heap::alloc;
use core::{
    alloc::Layout,
    cell::UnsafeCell,
    mem::MaybeUninit,
    ops::{Deref, DerefMut},
    ptr::NonNull,
};

//
// Arc
//

/// A wrapper of [`alloc::sync::Arc<T>`]
pub struct Arc<T: ?Sized> {
    inner: alloc::sync::Arc<T>,
}

// These require the same bounds as `alloc::sync::Arc`'s `Send` and `Sync`
// impls.
unsafe impl<T: Send + Sync> Send for Arc<T> {}
unsafe impl<T: Send + Sync> Sync for Arc<T> {}

impl<T> Arc<T> {
    /// Attempt to allocate a new reference counted T.
    ///
    /// Returns an error containing the provided value if the allocation
    /// could not immediately succeed.
    ///
    /// NOTE/TODO: Today this will panic if not immediately successful. This should
    /// be fixed in the future
    pub fn try_new(t: T) -> Result<Self, T> {
        Ok(Self {
            inner: alloc::sync::Arc::new(t),
        })
    }

    /// Attempt to allocate a new reference counted T.
    ///
    /// Will not complete until the allocation succeeds
    ///
    /// NOTE/TODO: Today this will panic if not immediately successful. This should
    /// be fixed in the future
    pub async fn new(t: T) -> Self {
        Self {
            inner: alloc::sync::Arc::new(t),
        }
    }

    /// Convert into a pointer
    ///
    /// This does NOT change the strong reference count
    pub fn into_raw(a: Self) -> NonNull<T> {
        unsafe { NonNull::new_unchecked(alloc::sync::Arc::into_raw(a.inner).cast_mut()) }
    }

    /// Restore from a pointer
    ///
    /// This does NOT change the strong reference count. This has the same
    /// safety invariants as [alloc::sync::Arc].
    #[inline(always)]
    pub unsafe fn from_raw(nn: NonNull<T>) -> Self {
        Self {
            inner: alloc::sync::Arc::from_raw(nn.as_ptr()),
        }
    }

    /// Increment the strong reference count
    ///
    /// This has the same afety invariants as [alloc::sync::Arc::increment_strong_count()].
    #[inline(always)]
    pub unsafe fn increment_strong_count(ptr: *const T) {
        alloc::sync::Arc::increment_strong_count(ptr)
    }
}

impl<T> Clone for Arc<T> {
    fn clone(&self) -> Self {
        Self {
            inner: self.inner.clone(),
        }
    }
}

impl<T> Deref for Arc<T> {
    type Target = alloc::sync::Arc<T>;

    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

//
// Box
//

/// A wrapper of [`alloc::boxed::Box<T>`]
pub struct Box<T> {
    inner: alloc::boxed::Box<T>,
}

unsafe impl<T: Send> Send for Box<T> {}
unsafe impl<T: Sync> Sync for Box<T> {}

impl<T> Box<T> {
    /// Attempt to allocate a new owned T.
    ///
    /// Will not complete until the allocation succeeds.
    pub async fn new(t: T) -> Self {
        let ptr: *mut T = alloc(Layout::new::<T>()).await.cast().as_ptr();
        unsafe {
            ptr.write(t);
            Self::from_raw(ptr)
        }
    }

    /// Attempt to allocate a new owned T.
    ///
    /// Returns an error containing the provided value if the allocation
    /// could not immediately succeed.
    pub fn try_new(t: T) -> Result<Self, T> {
        match NonNull::new(unsafe { alloc::alloc::alloc(Layout::new::<T>()) }) {
            Some(ptr) => unsafe {
                let ptr = ptr.cast::<T>().as_ptr();
                ptr.write(t);
                Ok(Self {
                    inner: alloc::boxed::Box::from_raw(ptr),
                })
            },
            None => Err(t),
        }
    }

    /// Convert into a pointer
    pub fn into_raw(me: Self) -> *mut T {
        alloc::boxed::Box::into_raw(me.inner)
    }

    /// Convert from a pointer
    ///
    /// This has the same safety invariants as [alloc::boxed::Box::from_raw()]
    pub unsafe fn from_raw(ptr: *mut T) -> Self {
        Self {
            inner: alloc::boxed::Box::from_raw(ptr),
        }
    }

    /// Convert to a regular old alloc box
    pub fn into_alloc_box(self) -> alloc::boxed::Box<T> {
        self.inner
    }
}

impl<T> Deref for Box<T> {
    type Target = alloc::boxed::Box<T>;

    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl<T> DerefMut for Box<T> {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.inner
    }
}

//
// ArrayBuf
//

/// A spooky owned array type
///
/// This type represents ownership of essentially an `UnsafeCell<MaybeUninit<[T]>>`.
///
/// It is intended as a low level building block for things like bbqueue and other data
/// structures that need to own a specific number of items, and would like to set their
/// own safety invariants, without manually using `alloc`.
pub struct ArrayBuf<T> {
    ptr: NonNull<UnsafeCell<MaybeUninit<T>>>,
    len: usize,
}

unsafe impl<T: Send> Send for ArrayBuf<T> {}
unsafe impl<T: Sync> Sync for ArrayBuf<T> {}

impl<T> ArrayBuf<T> {
    /// Gets the layout for `len` items
    ///
    /// Panics if creating the layout would fail (e.g. too large for the platform)
    fn layout(len: usize) -> Layout {
        Layout::array::<UnsafeCell<MaybeUninit<T>>>(len).unwrap()
    }

    /// Try to allocate a new ArrayBuf with storage for `len` items.
    ///
    /// Returns None if the allocation does not succeed immediately.
    ///
    /// Panics if the len is zero, or large enough that creating the layout would fail
    pub fn try_new_uninit(len: usize) -> Option<Self> {
        assert_ne!(len, 0, "ZST ArrayBuf doesn't make sense");
        let layout = Self::layout(len);
        let ptr = NonNull::new(unsafe { alloc::alloc::alloc(layout) })?.cast();
        Some(ArrayBuf { ptr, len })
    }

    /// Try to allocate a new ArrayBuf with storage for `len` items.
    ///
    /// Will not return until allocation succeeds.
    ///
    /// Panics if the len is zero, or large enough that creating the layout would fail
    pub async fn new_uninit(len: usize) -> Self {
        assert_ne!(len, 0, "ZST ArrayBuf doesn't make sense");
        let layout = Self::layout(len);
        let ptr = alloc(layout).await.cast();
        ArrayBuf { ptr, len }
    }

    /// Obtain a pointer to the heap allocated storage, as well as the length of items
    ///
    /// This does NOT leak the heap allocation. The returned pointer has the lifetime
    /// of this `ArrayBuf`.
    pub fn ptrlen(&self) -> (NonNull<UnsafeCell<MaybeUninit<T>>>, usize) {
        (self.ptr, self.len)
    }
}

impl<T> Drop for ArrayBuf<T> {
    fn drop(&mut self) {
        debug_assert_ne!(self.len, 0, "how did you do that");
        let layout = Self::layout(self.len);
        unsafe {
            alloc::alloc::dealloc(self.ptr.as_ptr().cast(), layout);
        }
    }
}

//
// FixedVec
//

/// A `Vec` with a fixed upper size
///
/// Semantically, [FixedVec] works basically the same as [alloc::vec::Vec], however
/// [FixedVec] will NOT ever reallocate to increase size. In practice, this acts like
/// a heap allocated version of heapless' Vec type.
pub struct FixedVec<T> {
    inner: alloc::vec::Vec<T>,
}

unsafe impl<T: Send> Send for FixedVec<T> {}
unsafe impl<T: Sync> Sync for FixedVec<T> {}

impl<T> FixedVec<T> {
    /// Try to allocate a new FixedVec with storage for UP TO `capacity` items.
    ///
    /// Returns None if the allocation does not succeed immediately.
    ///
    /// Panics if the len is zero, or large enough that creating the layout would fail
    pub fn try_new(capacity: usize) -> Option<Self> {
        assert_ne!(capacity, 0, "ZST FixedVec doesn't make sense");
        let layout = Layout::array::<T>(capacity).unwrap();

        unsafe {
            let ptr = NonNull::new(alloc::alloc::alloc(layout))?;
            return Some(FixedVec {
                inner: alloc::vec::Vec::from_raw_parts(ptr.cast().as_ptr(), 0, capacity),
            });
        }
    }

    /// Try to allocate a new FixedVec with storage for UP TO `capacity` items.
    ///
    /// Will not return until allocation succeeds.
    ///
    /// Panics if the len is zero, or large enough that creating the layout would fail
    pub async fn new(capacity: usize) -> Self {
        assert_ne!(capacity, 0, "ZST FixedVec doesn't make sense");
        let layout = Layout::array::<T>(capacity).unwrap();

        unsafe {
            let ptr = alloc(layout).await;
            return FixedVec {
                inner: alloc::vec::Vec::from_raw_parts(ptr.cast().as_ptr(), 0, capacity),
            };
        }
    }

    /// Attempt to push an item into the fixed vec.
    ///
    /// Returns an error if the fixed vec is full
    #[inline]
    pub fn try_push(&mut self, t: T) -> Result<(), T> {
        if self.is_full() {
            Err(t)
        } else {
            self.inner.push(t);
            Ok(())
        }
    }

    /// Attempt to push an item into the fixed vec.
    ///
    /// Returns an error if the slice would not fit in the capacity.
    /// If an error is returned, the contents of the FixedVec is unchanged
    #[inline]
    pub fn try_extend_from_slice(&mut self, sli: &[T]) -> Result<(), ()>
    where
        T: Clone,
    {
        let new_len = match self.inner.len().checked_add(sli.len()) {
            Some(c) => c,
            None => return Err(()),
        };

        if new_len > self.inner.capacity() {
            return Err(());
        }

        self.inner.extend_from_slice(sli);
        Ok(())
    }

    /// Obtain a reference to the underlying [alloc::vec::Vec]
    #[inline]
    pub fn as_vec(&self) -> &alloc::vec::Vec<T> {
        &self.inner
    }

    /// Get inner mutable vec
    ///
    /// SAFETY:
    ///
    /// You must not do anything that could realloc or increase the capacity.
    /// We want an exact upper limit.
    ///
    /// This would not be memory unsafe, but would violate the invariants of [FixedVec],
    /// which is supposed to have a fixed upper size.
    #[inline]
    pub unsafe fn as_vec_mut(&mut self) -> &mut alloc::vec::Vec<T> {
        &mut self.inner
    }

    /// Obtain a reference to the current contents
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        &self.inner
    }

    /// Obtain a mutable reference to the current contents
    #[inline]
    pub fn as_slice_mut(&mut self) -> &mut [T] {
        &mut self.inner
    }

    /// Clear the FixedVec
    #[inline]
    pub fn clear(&mut self) {
        self.inner.clear();
    }

    /// Is the FixedVec full?
    #[inline]
    pub fn is_full(&self) -> bool {
        self.inner.len() == self.inner.capacity()
    }
}