1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
#![no_std]
extern crate alloc;
pub mod dmac;
pub mod drivers;
pub mod plic;
mod ram;
pub mod timer;
use core::{
fmt::Write,
panic::PanicInfo,
sync::atomic::{AtomicBool, Ordering},
time::Duration,
};
use d1_pac::{Interrupt, DMAC, TIMER};
use kernel::{
daemons::sermux::{hello, loopback, HelloSettings, LoopbackSettings},
mnemos_alloc::containers::Box,
services::{forth_spawnulator::SpawnulatorServer, serial_mux::SerialMuxServer},
trace::{self, Instrument},
Kernel, KernelSettings,
};
pub use self::ram::Ram;
use self::{
dmac::Dmac,
drivers::{
spim::{self, SpiSenderServer},
uart::{D1Uart, Uart},
},
plic::{Plic, Priority},
timer::{Timer, TimerMode, TimerPrescaler, Timers},
};
pub struct D1 {
pub kernel: &'static Kernel,
pub timers: Timers,
pub plic: Plic,
_uart: Uart,
_spim: spim::Spim1,
}
static COLLECTOR: trace::SerialCollector = trace::SerialCollector::new();
impl D1 {
/// Initialize MnemOS for the D1.
///
/// This function configures the hardware platform and spawns driver
/// services for SPI and UART, as well as the Serial Mux and Tracing
/// services.
///
/// **Note**: Initialize the global allocator prior to calling this
/// function.
pub fn initialize(
timers: Timers,
uart: Uart,
spim: spim::Spim1,
dmac: Dmac,
plic: Plic,
) -> Result<Self, ()> {
let k_settings = KernelSettings {
max_drivers: 16,
// Note: The timers used will be configured to 3MHz, leading to (approximately)
// 333ns granularity.
timer_granularity: Duration::from_nanos(333),
};
let k = unsafe {
Box::into_raw(Kernel::new(k_settings).map_err(drop)?)
.as_ref()
.unwrap()
};
let [ch0, ..] = dmac.channels;
dmac.dmac.dmac_irq_en0.modify(|_r, w| {
// used for UART0 DMA sending
w.dma0_queue_irq_en().enabled();
// used for SPI1 DMA sending
w.dma1_queue_irq_en().enabled();
w
});
// Initialize SPI stuff
k.initialize(async move {
// Register a new SpiSenderServer
SpiSenderServer::register(k, 4).await.unwrap();
})
.unwrap();
// Initialize SimpleSerial driver
k.initialize(async move {
D1Uart::register(k, 4096, 4096, ch0).await.unwrap();
})
.unwrap();
// Initialize the SerialMuxServer
k.initialize({
const PORTS: usize = 16;
const FRAME_SIZE: usize = 512;
async {
// * Up to 16 virtual ports max
// * Framed messages up to 512 bytes max each
tracing::debug!("initializing SerialMuxServer...");
SerialMuxServer::register(k, PORTS, FRAME_SIZE)
.await
.unwrap();
tracing::info!("SerialMuxServer initialized!");
}
.instrument(tracing::info_span!(
"SerialMuxServer",
ports = PORTS,
frame_size = FRAME_SIZE
))
})
.unwrap();
// initialize tracing
k.initialize(async move {
COLLECTOR.start(k).await;
})
.unwrap();
// Spawn a loopback port
let loopback_settings = LoopbackSettings::default();
k.initialize(loopback(k, loopback_settings)).unwrap();
// Spawn a hello port
let hello_settings = HelloSettings::default();
k.initialize(hello(k, hello_settings)).unwrap();
// Spawn the spawnulator
k.initialize(SpawnulatorServer::register(k, 16)).unwrap();
Ok(Self {
kernel: k,
_uart: uart,
_spim: spim,
timers,
plic,
})
}
/// Spawns a SHARP Memory Display driver and a graphical Forth REPL on the Sharp
/// Memory Display.
///
/// This function requires a SHARP memory display to be connected to the D1's
/// SPI_DBI pins (SPI1).
///
/// # Panics
///
/// If the SHARP Memory Display driver or the graphical Forth REPL tasks
/// could not be spawned.
pub fn initialize_sharp_display(&self) {
use drivers::sharp_display::SharpDisplay;
use kernel::daemons::shells;
const MAX_FRAMES: usize = 4;
// the `'static` kernel reference is the only thing from `self` that
// must be moved into the spawned tasks.
let k = self.kernel;
let sharp_display = self
.kernel
.initialize(SharpDisplay::register(k, MAX_FRAMES))
.expect("failed to spawn SHARP display driver");
// spawn Forth shell
self.kernel
.initialize(async move {
trace::debug!("waiting for SHARP display driver...");
sharp_display
.await
.expect("display driver task isn't cancelled")
.expect("display driver must come up");
trace::debug!("display driver ready!");
let settings = shells::GraphicalShellSettings::with_display_size(
SharpDisplay::WIDTH as u32,
SharpDisplay::HEIGHT as u32,
);
k.spawn(shells::graphical_shell_mono(k, settings)).await;
trace::info!("graphical shell running.");
})
.expect("failed to spawn graphical forth shell");
}
pub fn run(self) -> ! {
let Self {
kernel: k,
timers,
plic,
_uart,
_spim,
} = self;
// Timer0 is used as a freewheeling rolling timer.
// Timer1 is used to generate "sleep until" interrupts
//
// Both are at a time base of 3M ticks/s.
//
// In the future, we probably want to rework this to use the RTC timer for
// both purposes, as this will likely play better with sleep power usage.
let Timers {
mut timer0,
mut timer1,
} = timers;
// NOTE: if you change the timer frequency, make sure you update
// initialize_kernel() below to correct the kernel timer wheel
// granularity setting!
timer0.set_prescaler(TimerPrescaler::P8); // 24M / 8: 3.00M ticks/s
timer1.set_prescaler(TimerPrescaler::P8);
timer0.set_mode(TimerMode::PERIODIC);
timer1.set_mode(TimerMode::SINGLE_COUNTING);
let _ = timer0.get_and_clear_interrupt();
let _ = timer1.get_and_clear_interrupt();
unsafe {
riscv::interrupt::enable();
riscv::register::mie::set_mext();
}
unsafe {
plic.register(Interrupt::TIMER1, Self::timer1_int);
plic.register(Interrupt::DMAC_NS, Self::handle_dmac);
plic.register(Interrupt::UART0, D1Uart::handle_uart0_int);
plic.activate(Interrupt::DMAC_NS, Priority::P1).unwrap();
plic.activate(Interrupt::UART0, Priority::P1).unwrap();
}
timer0.start_counter(0xFFFF_FFFF);
loop {
// Tick the scheduler
let start = timer0.current_value();
let tick = k.tick();
// Timer is downcounting
let elapsed = start.wrapping_sub(timer0.current_value());
let turn = k.timer().force_advance_ticks(elapsed.into());
// If there is nothing else scheduled, and we didn't just wake something up,
// sleep for some amount of time
if turn.expired == 0 && !tick.has_remaining {
let wfi_start = timer0.current_value();
// TODO(AJM): Sometimes there is no "next" in the timer wheel, even though there should
// be. Don't take lack of timer wheel presence as the ONLY heuristic of whether we
// should just wait for SOME interrupt to occur. For now, force a max sleep of 100ms
// which is still probably wrong.
let amount = turn.ticks_to_next_deadline().unwrap_or(100 * 1000 * 3); // 3 ticks per us, 1000 us per ms, 100ms sleep
// Don't sleep for too long until james figures out wrapping timers
let amount = amount.min(0x4000_0000) as u32;
let _ = timer1.get_and_clear_interrupt();
unsafe {
plic.activate(Interrupt::TIMER1, Priority::P1).unwrap();
}
timer1.set_interrupt_en(true);
timer1.start_counter(amount);
unsafe {
riscv::asm::wfi();
}
// Disable the timer interrupt in case that wasn't what woke us up
plic.deactivate(Interrupt::TIMER1).unwrap();
timer1.set_interrupt_en(false);
timer1.stop();
// Account for time slept
let elapsed = wfi_start.wrapping_sub(timer0.current_value());
let _turn = k.timer().force_advance_ticks(elapsed.into());
}
}
}
/// DMAC ISR handler
///
/// At the moment, we only service the Channel 0 interrupt,
/// which indicates that the serial transmission is complete.
fn handle_dmac() {
let dmac = unsafe { &*DMAC::PTR };
dmac.dmac_irq_pend0.modify(|r, w| {
tracing::trace!(dmac_irq_pend0 = ?format_args!("{:#b}", r.bits()), "DMAC interrupt");
if r.dma0_queue_irq_pend().bit_is_set() {
D1Uart::tx_done_waker().wake();
}
if r.dma1_queue_irq_pend().bit_is_set() {
spim::SPI1_TX_DONE.wake();
}
// Will write-back and high bits
w
});
}
/// Timer1 ISR handler
///
/// We don't actually do anything in the TIMER1 interrupt. It is only here to
/// knock us out of WFI. Just disable the IRQ to prevent refires
fn timer1_int() {
let timer = unsafe { &*TIMER::PTR };
timer
.tmr_irq_sta
.modify(|_r, w| w.tmr1_irq_pend().set_bit());
// Wait for the interrupt to clear to avoid repeat interrupts
while timer.tmr_irq_sta.read().tmr1_irq_pend().bit_is_set() {}
}
pub fn handle_panic(info: &PanicInfo) -> ! {
// Disable interrupts.
unsafe {
riscv::interrupt::disable();
}
// Avoid double panics.
static PANICKING: AtomicBool = AtomicBool::new(false);
if PANICKING.swap(true, Ordering::SeqCst) {
die();
}
// Cancel any in-flight DMA requests. It's particularly important to
// cancel the UART TX DMA channel, because we're about to dump the panic
// message to the UART, but we may as well tear down any other in-flight
// DMAs.
for idx in 0..Dmac::CHANNEL_COUNT {
unsafe {
let mut ch = dmac::Channel::summon_channel(idx);
ch.stop_dma();
}
}
// Ugly but works
let mut uart: Uart = unsafe { core::mem::transmute(()) };
// end any existing SerMux frame on the UART
uart.write(&[0]);
// write out the panic message in plaintext
write!(&mut uart, "\r\n{info}\r\n").ok();
// end the SerMux frame so crowtty can decode the panic message as utf8
uart.write(&[0]);
write!(
&mut uart,
"you've met with a terrible fate, haven't you?\r\n"
)
.ok();
uart.write(&[0]);
die();
/// to sleep, perchance to dream; aye, there's the rub,
/// for in that sleep of death, what dreams may come?
fn die() -> ! {
loop {
// wait for an interrupt to pause the CPU. since we just
// disabled interrupts above, this will keep the CPU in a low
// power state until it's reset.
unsafe {
riscv::asm::wfi();
}
}
}
}
}